
Unrestricted Lambda

The procedure (lambda (x y z)) takes 3 arguments. (lambda
(x y z w) ...) takes 4. Sometimes we want to write a function
that takes an indeterminate number of arguments. For
example, we might want to have an average procedure that
averages its arguments:

(avg 4) returns 4
(avg 3 4) returns 3.5
(avg 3 4 5) returns 4,

and so forth.

If we write a lambda expression with one parameter, without
parentheses around this parameter, as in

(lambda args ...)
then when this procedure is call all of the actual arguments are
collected in a list which is bound to the parameter args.

Here is our function avg:
(define avg

(lambda args
(let ([sum (apply + args)]

[n (length args)])
(/ sum n))))

You may have noticed that +, <, max, and other operators are
defined as procedures in Scheme, but and is a form (a kind of
expression), not a procedure. This means that we can't apply and in
a recursion. Here is a procedure-version of and:

(define and-proc
(lambda args

(cond
[(null? args) #t]
[(car args) (apply and-proc (cdr args))]
[else #f])))

